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1 Introduction1

Pairs trading is a difficult yet profitable market-neutral trading strategy. Pairs trading seeks to profit2

from the relative price movements of two stocks [1]. A trader looks to find volatile market conditions3

where two correlated stocks significantly diverge in price. The trader then takes a short position in4

one stock and a long position in the other. There are three main components to pairs trading: picking5

the pair of assets to trade, modeling the relation between the price of these assets, and executing a6

trading strategy. In this paper, we explore the first two components. In a real world setting, randomly7

selecting pairs of stocks is unlikely to produce good results, while exhaustively trying all pairs8

of stocks is practically impossible because of the high number of possible combinations and the9

computational power that would be required to train that many models (especially when using deep10

learning models). Thus, finding simple metrics that can be computed quickly and can indicate good11

model performance is valuable for of pairs trading. To model the relation between the price of two12

stocks we use Ornstein-Uhlenbeck modeling and long short-term memory (LSTM) networks. We13

then attempt to find time series statistics that are good indicators of model performance.14

2 Methods15

2.1 Stock Selection16

We select stocks from three sectors: energy, healthcare, and financial services. These sectors are17

selected since they are large and generally move separately from each other. Within each sector,18

we choose five of the largest market cap stocks. All stocks chosen are traded on the New York19

Stock Exchange. Stocks with a large market cap tend to have the most volume and liquidity and are20

therefore easiest to trade and best for pairs trading. Figure 1 shows all the stocks we used in our21

analysis. We used daily close prices for these stocks from December 2016 to December 2021. This22

data comes from Yahoo Finance and is free to use.23

2.2 Baseline Model24

For our baseline model, we chose to use the one timestep lagged predictions. Therefore, for a spread25

at time t Xt, the baseline model predicts Xt−1. We chose this baseline for two reasons. First, this26

baseline only uses the past prediction, so comparing to this baseline shows how effectively our models27

can synthesize multiple past data points in a prediction. Second, this baseline is easy to implement.28

2.3 Ornstein-Uhlenbeck Model29

We construct the spread Xt between two stock prices At and Bt as30

Xt = At − βBt, (1)



Sector Ticker Company Name
Energy XOM Exxon Mobil Corp
Energy CVX Chevron Corporation
Energy RYDAF Royal Dutch Shell Plc
Energy PTR PetroChina Company Limited
Energy TTE TotalEnergies SE

Healthcare UNH UnitedHealth Group Inc
Healthcare CVS CVS Health Corp
Healthcare ANTM Anthem Inc
Healthcare HCA HCA Healthcare Inc
Healthcare MCK McKesson Corporation

Financial Services JPM JPMorgan Chase & Co.
Financial Services V Visa Inc
Financial Services BAC Bank of America Corp
Financial Services MA Mastercard Inc
Financial Services PYPL Paypal Holdings Inc

Figure 1: Table of the stocks selected for our analysis.

where β is a scalar parameter. The spread of the two stock prices is assumed to be a mean-reverting31

time series process. An Ornstein-Uhlenbeck (OU) model is constructed using the following Stochastic32

Differential Equation:33

dXt = µ(θ −Xt)dt+ σdWt, (2)

where θ is the mean that the process converges to in the long term, µ is the speed of reversion, σ is34

the instantaneous volatility, and Wt is a Weiner process (one dimensional Brownian motion). In order35

to fit θ, µ, and σ, we use a least squares regression approach. First, we can write an exact solution of36

the differential equation [2]:37

Xt+1 = Xte
−λδ + µ

(
1− e−λδ

)
+ σ

√
1− e−2λδ

2λ
N (0, 1). (3)

δ is the time step between subsequent observations; we use δ = 1 since we are modeling the process38

with daily stock prices. We can see that this is an AR(1) process with drift. Therefore, we can fit an39

AR(1) process to the data to extract the parameters θ, µ, and σ.40

One interesting property of the OU model is that the further away the spread is from its long term41

mean, the faster it reverts to it. One practical problem with this model is that it assumes that the stock42

prices are co integrated. This means that there exists a scalar β such that the spread Xt is stationary.43

We ran the ADF test on different pairs of stocks, with various values of β, and found that in most44

cases two pairs of stocks are not co-integrated over a long period, even if the companies have similar45

businesses. However, it is reasonable to assume that a pair is co-integrated for a shorter time period.46

Therefore, we decide to use a rolling window to calculate the spread. To calculate the spread at time47

t, we use the data from d previous days. We use linear regression to calculate the the optimal βt that48

minimizes the following expression:49

t−1∑
i=t−d

(Ai − βtBi)
2. (4)

Using the βts, we calculate the new spread, and fit the OU equation to this new spread. For our50

experiments we used the value d = 10.51

2.4 Deep Learning with LSTMs52

As an alternative to OU Modeling, we model the price difference of two stocks using LSTM-based53

neural networks. This has been explored in previous research with moderate success [3]. When using54

LSTMs, less data processing is needed. Specifically, we do not have a coefficient β that we try to55
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calculate because there are no assumptions relating to stationary. Therefore, we can use the raw56

spread X ′
t for stock prices At and Bt57

X ′
t = At −Bt (5)

as input to the model. One advantage of LSTMs (and deep learning in general) is that it can uncover58

complex non-linear relationships that traditional statistical models cannot. One downside is that is59

that the parameters and the predictions of the model are often not easy to explain. Also, there are60

many hyper-parameters related to the architecture and the training process that need tuning, which61

requires a certain level of expertise in the field.62

LSTMs are a version of standard neural networks that work better with sequential data. They are63

more sophisticated than RNNs (Recurrent Neural Networks), because they have to ability to carry64

information from much earlier data in a sequence. It’s not clear whether long sequences are needed65

to predict the price difference of two stocks, but because of our limited time we decided to go along66

with using LSTMs instead of RNNs. For each data point, we build sequences of length 51, where67

the first 50 elements are the price differences from the previous 50 days. Even if the 50 day period68

we chose is unnecessarily long, we would expect LSTM "forget gate" weights to learn this during69

training, so we don’t need to spend time optimizing the sequence length. Figure 2 shows a diagram70

of an LSTM cell.71

Figure 2: Figure visualizing how an LSTM cell works.

Our model we use includes two layers of LSTMs. This means that the sequence is fed through an72

LSTM, and the output of the first LSTM is fed through another LSTM. The output of the second73

LSTM passes through a dense layer that transforms a vector in to a scalar, which is our final prediction74

of the price difference. We used two layers because it performed better than a single layer network75

and using three layers significantly increased training time while not improving model performance.76

To avoid overfitting, we used dropout for each LSTM layer, monitored the validation set loss and77

used early stopping.78

Ideally, we would want to tune the hyper-parameters for each pair spread model separately for optimal79

model performance. This is not practical in our case, however, since even a small set of 15 stocks80

results in 210 pairs. Therefore, we tuned the hyper-parameters for the spread of a single pair that81

was performing well, and then trained separate models for all pairs using the same architecture and82

hyper-parameters. This challenge that we faced further supports the significance of developing pair83

selection methods. For example, if we had a method of predicting the top 5 pairs out of a 210 using a84

simple statistic, we could tune their models separately.85
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2.5 Methods for Picking Pairs86

We calculate four metrics for each pair of stocks: cumulative distance, Augmented Dickey-Fuller87

(ADF) test p-value, standard deviation of the spread with no beta adjustment, and standard deviation88

of the spread with beta adjustment.89

The first metric we use to compare each pair of stocks is the distance between the normalized90

cumulative returns of two stocks. This method has been used in previous literature on pairs trading91

[1]. Let x(t) and y(t) be the prices of two stocks at time t. This distance is given by the following92

formula:93
N∑
i=0

(Cx(t) − Cy(t))
2 (6)

where Cx(t) =
x(t)− x(0)

x(0)
, and Cy(t) =

y(t)− y(0)

y(0)
.94

The second metric we look at is the p-value of the ADF test, which is used to test if a time series is95

stationary. When applying this metric to a pair of stocks, we first normalize the prices for each stock96

by subtracting the mean and dividing by the standard deviation. Then we take the difference of the97

two normalized time-series, and apply the ADF test.98

The third metric we use is the standard deviation of the spread between the two stocks. The spread99

for the price series for two stock prices At and Bt is simply At − Bt as described in Section 2.4.100

Before taking the difference, we normalize the prices for each stock by subtracting the mean and101

dividing by the standard deviation.102

The fourth metric we use is the standard deviation of the β-adjusted spread between the two stocks.103

The β-adjusted spread for the price series for two stocks is described by Equation 4.104

3 Experiments105

3.1 Metrics Results106

We calculate the metrics from Section 2.5 for all pairs of stocks. Figure 3 includes a heatmap for107

each metric calculated for all pairs of stocks. The stocks are ordered by sector; stocks in the same108

sector are adjacent. For each metric, we expect the 5x5 blocks on the diagonals to be darker (lower109

distance) since these correspond to stocks in the same sector. For the cumulative distance heatmap,110

the top left 5x5 block is dark, meaning the distance between the stock prices of energy companies is111

quite low. This is likely because they all heavily depend on oil prices and generally move together. In112

contrast, the financial services sector tends to have higher distances than the energy sector. This is113

likely because this sector contains many different types of businesses such as Bank of America (BAC)114

and PayPal (PYPL). Furthermore, we see some similarities between the ADF p-value heatmap and115

the cumulative distance heatmap. Notably, the pairs in the energy sector in the top left 5x5 block have116

low p-values. From the heatmap we also see that standard deviation of the spread is low for energy117

stocks and high for financial stocks, similar to the heatmaps for cumulative distance and p-value.118

Lastly, from the figure we see that the standard deviation of the β-adjusted spread is also low for119

energy stocks and higher for financial stocks.120

3.2 OU Modeling Results121

We fit an OU model using the methodology described in Section 2.3 to each pair of stocks. Figure122

4 shows an OU model fit to spread between two tickers. We can see that the OU predictions look123

similar to one step lagged predictions. However, the model notably tends to the mean more than one124

step ahead predictions would. This is a feature of the OU model.125

For each pair of stocks, we calculate the mean squared error (MSE) for the OU process. We then126

compare the OU MSE to the MSE of the baseline model described in Section 2.2. We compute the127

ratio of OU vs. baseline MSE by dividing the OU MSE by the baseline MSE. A ratio less than one128
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Figure 3: Top Left: Heatmap of the distances between stocks using the difference between normalized
cumulative returns of stocks. Top Right: Heatmap of the p-value of the ADF test applied on the
difference of normalized stock prices. Bottom Left: Heatmap of the standard deviation of the
normalized price difference between stocks. Bottom Right: Heatmap of the standard deviation of the
β-adjusted price difference between stocks.

indicates that the OU model has lower MSE than the baseline model and a ratio greater than one129

indicates that the OU model has a higher MSE. This ratio is an indicator of how good the OU model130

is compared to the baseline. We create a heatmap of this ratio for each pair of stocks in Figure 5. We131

see that the best OU baseline MSE ratio is for pairs of stocks in the energy sector. This means that132

the spread for pairs of stocks in the energy sector are best modeled by an OU process compared to133

stocks in other sectors.134

We also compare the metrics described in Section 2.5 to the OU baseline MSE ratio. Intuitively, we135

would like to see if the metrics described are good predictors of OU MSE fit. Figure 6 shows the raw136

(not β-adjusted) standard deviation metric compared to the OU baseline MSE ratio. We see that there137

is a positive correlation between these two variables: lower standard deviation generally corresponds138

to lower MSE and vice versa. This makes sense because spreads with lower variance should result139

in better OU fits. Although there is not a perfect relationship between standard deviation and OU140

baseline MSE ratio, we can use the standard deviation to eliminate pairs that perform poorly with OU141

modeling. We can see that the best fits (i.e. lowest OU baseline MSE ratio) occur when the standard142

deviation is less than 0.5. Therefore, when we are choosing which pairs to use for modeling the143

spread, we can eliminate pairs with a standard deviation above 0.5 since they are likely to have poor144

OU fits. This is useful because around half of the pairs have a standard deviation above 0.5, so by145
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Figure 4: Upper: Time series of the spread between XOM and CVX and the OU predictions for
several months of data. Lower: Time series of the spread between XOM and CVX and the LSTM
predictions for several months of data. Note that the true spreads are different for the two graphs since
the upper graph spread is adjusted with a rolling β while the lower graph is the raw spread (β=1).

Figure 5: Left: Heatmap of OU MSE divided by baseline MSE for all stock pairs. Right: Heatmap
of LSTM MSE divided by baseline MSE for all stock pairs. The values in this heatmap are clipped to
the range [0,2].

eliminating the pairs with high standard deviation spreads, we only have to consider half the total146

pairs to find the most effective OU models.147

3.3 LSTM Results148

We fit an LSTM model using the methodology described in Section 2.4 to each pair of stocks. Figure149

4 shows an LSTM model fit to spread between two tickers. Similar to the OU model, we can see150

that the LSTM predictions look similar to one step lagged predictions. However, the model is more151

smooth than simple one step ahead predictions.152

For each pair of stocks, we calculate the MSE for the LSTM process. We then compare the LSTM153

MSE to the MSE of the baseline model described in Section 2.2. We compute the ratio of LSTM154

vs. baseline MSE by dividing the LSTM MSE by the baseline MSE. As before, a ratio less than one155
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Figure 6: Left: Scatter plot comparing OU MSE divided by the baseline MSE of a stock pair to the
standard deviation of the spread between the stock prices with no beta adjustment. Each point on
the scatter plot represents a stock pair. Right: Scatter plot comparing LSTM MSE divided by the
baseline MSE of a stock pair to the standard deviation of the spread between the stock prices with no
beta adjustment.

indicates that the LSTM model has lower MSE than the baseline model and a ratio greater than one156

indicates that the LSTM model has a higher MSE. This ratio is an indicator of how good the LSTM157

model is compared to the baseline. We create a heatmap of this ratio for each pair of stocks in Figure158

5. For the heatmap, we restrict the ratio to the range [0,2] for better visualization. In contrast to the159

OU baseline MSE ratio, the LSTM baseline MSE ratio has a higher range of values. The lowest value160

for the OU baseline MSE ratio is 0.85, while the highest value is 1. However, the lowest value for the161

LSTM baseline MSE ratio is 0.10, while the highest value is over 4. This shows that the model is162

extremely effective for some pairs and less effective for others. From the heatmap, we can see that163

the best LSTM MSE to baseline MSE ratio is not concentrated in specific sectors. This contrasts to164

the OU MSE to baseline MSE ratio, where the best ratios occurred for pairs of energy stocks.165

We also compare the metrics described in Section 2.5 to the LSTM MSE to baseline MSE ratio. Figure166

6 shows the raw (not β-adjusted) standard deviation metric compared to the LSTM baseline MSE167

ratio. We see that there is little correlation between these variables. Therefore, standard deviation is168

not a good indicator of LSTM fit. This is likely because LSTMs are nonlinear models and can model169

the spread of pairs of unrelated stocks well. Overall, we see that the standard deviation metric is more170

useful for predicting OU model performance compared to LSTM model performance.171

4 Challenges and Future Work172

4.1 Challenges173

One challenge we encountered was comparing model performance between different pairs and174

different models. Comparing model performance between different pairs was difficult since each175

stock has a different price and therefore the spreads between different pairs have vastly different176

scales. To remedy this problem, we normalized the stocks before inputting them into our models.177

Comparing different models was difficult since the OU model and the LSTM model have different178

inputs. The OU model uses the β-adjusted spread, while the LSTM model uses the non-adjusted179

spread. Therefore, we could not compare the MSE or other statistics from the fitted models directly.180

Instead, we opted to compare each model separately to a baseline model. This let us compare the two181

models by comparing their improvement over the baseline.182
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4.2 Future Work183

There are many directions that can be taken to extend the work done in this paper. First, more work184

can be done to tune the rolling window size for the β-adjusted spread. The value of d in Equation 4185

determines the size of the rolling window. In our analysis, we used d = 10, however changing this186

value could improve model performance.187

Second, the methods developed in this paper can be extended to more pairs of stocks and more sectors.188

The number of stocks considered in this paper (15) is low compared to the number of available stocks189

on the New York Stock Exchange (about 2400). Increasing the number of stocks is hard because190

training the models, specifically the LSTM model, is time-consuming. With more time and compute191

power, however, our analysis could be easily extended to more stocks and sectors, however.192

Third, the experiments in this paper can be applied to more granular data (hour, minute, or even second193

level). The properties of the differenced time-series can significantly change with more granular194

data, and taking advantage of shorter divergences in price could be more profitable. Additionally,195

deep learning methods could prove even more useful because the number of data points for training196

would be much higher. One interesting research direction would be to apply modern time series deep197

learning algorithms such as S3 [4] to spread prediction.198

Fourth, another way to assess the effectiveness of our models would be to conduct simulated trading199

using the models. There is existing literature that seeks to find the best trading signal with certain200

models [1][3][5][6], however optimizing a strategy with our framework and models would be an201

interesting extension of this work.202
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