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Abstract—In this research proposal, we propose a procedure
to effectively compare reinforcement learning (RL) and hierar-
chical reinforcement learning (HRL) algorithms. Specifically, we
compare three different algorithms: end-to-end RL, HRL with
preset sub-policies, and HRL with learned sub-policies. For these
algorithms, we leverage existing knowledge in the literature and
use deep RL and HRL methods with proximal policy optimization
for training. We propose metrics for both simulated and real
robot experiments centered around training time, accuracy, and
reward to compare the three different algorithms. The task we
propose to use is to rotate a cube to a desired face with the
TriFinger robot. This task is simple and has a clear hierarchy,
making it effective for this research. Furthermore, we use the
TriFinger setup since it is cheap, open source, and has proven
sim-to-real transferability. Lastly, we present some initial results
that inform our experimental procedure and show that our
research is viable.

I. INTRODUCTION

Hierarchical reinforcement learning (HRL) is a reinforce-
ment learning (RL) scheme that learns on multiple time
horizons. Instead of learning a single policy to solve a task,
HRL seeks to learn a high-level policy that chooses optimal
sub-policies as its actions. Each sub-policy may also be learned
with RL. This has the effect of learning on multiple time
horizons: the high-level policy learns on a longer time horizon
than the sub-policies. Formally, the theory of HRL extends
the traditional framework of RL by introducing closed-loop
sub-policies. Then the sub-policies can be added to the set of
actions that can be chosen by a high-level policy. Sutton et al.
[14] introduce such a framework, where the closed-loop sub-
policies are called options. The framework uses the RL notions
of states S and primitive actions .4. O denotes the set of all
available options. Each option consists of a policy, termination
condition, and an initiation set. The high-level policy is then
w8 x O — [0,1] selects an option o € O that begins in
state s; according to the probability distribution (s, -). This
is analogous to the policy 7 : Sx A — [0, 1] in typical RL. For
the rest of the paper, we will refer to options as sub-policies.

For this paper, we focus on the task of rotating a cube
to a desired face while the cube stays in a robot hand. This
task lends itself to HRL since there are intuitive sub-policies.
Namely, these sub-policies are rotating the cube forwards,
backwards, left, and right. The robot we use in simulation
and for real experiments is the TriFinger robot [16]. This task
is difficult because the state and action spaces are continuous.

The action space is nine-dimensional and consists of the torque
for each of the nine degrees of freedom for the robot. The
state space is six-dimensional and consists of the rotation and
spatial position of the cube.

We seek to compare the effectiveness of three approaches
to solving this task. The three approaches we consider are
end-to-end RL, HRL with preset sub-policies, and HRL with
learned sub-policies. By investigating the tradeoffs between
these three methods, we seek to inform future efforts to build
dexterous robots. Furthermore, there is a need in the current
literature to compare these different types of algorithms head-
to-head: tested on the same systems and trained in a similar
fashion.

The 2020 Real Robot Challenge (RRC) was a competition
where the challenge is to design manipulation agents using the
TriFinger robot. One task for the competition was to move a
cube from an initial location to a final location. This task was
divided into four difficulty levels; the highest difficulty level
considers the goal orientation of the cube while the others
are only focused on the spatial position of the cube. Since the
highest difficulty level is cube rotation, this shows that rotating
a cube is a difficult task. Funk et al. [10] present various
baselines for the RRC. Their baselines include three methods:
using grasp heuristics and control strategies, implementing
Bayesian optimization, and using residual policy learning.
Notably, we see that the baselines do not include HRL. We
seek to find if HRL improves accuracy for the rotation task,
which would provide evidence that it should be considered as
part of an algorithm for the competition.

The task we are considering falls under the topic of in-hand
manipulation, which is the ability to reposition an object while
the object stays in a robot hand. In-hand manipulation is useful
for building robust and adaptable robots. If the orientation of
the object in a robot hand is not right for the task at hand, in-
hand manipulation is essential. Chavan-Dafle et al. [4] discuss
different ways for a robot hand to regrasp objects by leveraging
outside forces such as gravity and normal forces from surfaces
such as tables and walls. This paper hard codes different
regrasp procedures for a robot hand with various objects. This
is useful, however, if a new object is added to the environment
or if a new robot hand is introduced, creating the regrasp
procedures is difficult and time-consuming and must be done
manually. In short, the methods in this paper are not easily



transferable to general objects and robot hands. As far as we
know, there is no such regrasping system in the literature that
is proven to work on real robotic systems. Therefore, there is a
need for object and hand agnostic methods of building regrasp
procedures. RL is a natural choice to solve this problem. This
paper is a first step in the direction of building effective in-
hand manipulation procedures that do not depend on a specific
robot setup and that can be learned with only knowledge of
the goal state.

II. RELATED WORK
A. HRL Frameworks

There are various HRL frameworks that seek to use sub-
policies to speed up the learning process and to easily learn
new tasks. The most well-known framework is the options
framework developed by Sutton et al. [14]. Other frame-
works include the hierarchies of abstract machines approach
developed by Parr and Russell and the MAXQ framework
developed by Dietterich [2]. These approaches all use semi-
Markov decision processes (SMDPs) to model sub-policies.
SMDPs extend MDPs by allowing actions to take variable
amounts of time. This quality makes SMDPs effective for
modeling continuous-time discrete-event systems [[14]. In this
paper, we use the options approach developed by Sutton et al.
[14] to implement the HRL policy with preset sub-policies
because their approach is the most commonly used in HRL
literature.

B. Task-Insensitive HRL

There is an abundance of work focused on learning sub-
policies autonomously. This work can be divided into two
classes: discovering sub-policies and learning sub-policies.
Discovering sub-policies generally consists of finding useful
states that the agent should reach and then learning policies
to achieve them. Learning sub-policies consists of finding
optimal policies without identifying specific subgoal states.

Discovering sub-policies using subgoal states is well-known
and well-researched. Mcgovern and Barto [12] use the notion
of bottleneck states to identify states that should be used as
subgoals. Bottleneck states are states that all the successful
trajectories pass through. One example of a bottleneck state
is a doorway connecting two rooms in a multi-room navi-
gation task. The authors identify these states using diverse
density and use typical RL methods to create sub-policies
based on the bottleneck states. Simsek and Barto [5] also
use the notion of bottleneck states to identify subgoals and
sub-policies. However, this paper uses an intuitive measure
of centrality of graphs to find bottleneck states. Konidaris
and Barto [11] extend the previous approaches to be used
with continuous state and action spaces. This is an important
contribution because most robotics problems have continuous
state and/or action spaces, and discretizing these spaces is
not desirable. For our task, we have both continuous state
and action spaces. Daniel et al. [[6] develop an approach to
find sub-policies on continuous and discrete state and action
spaces. The authors use a probabilistic formulation to infer all

the relevant components from data. The authors notably show
that their approach applies well to both discrete and continuous
domains.

These papers all use the notion of bottleneck states to iden-
tify subgoals and then learn policies based on these subgoals.
The papers show that the policies identified are effective in
learning and make intuitive sense. However, these papers lack
effective comparison to typical RL methods, especially on
complex robotics tasks. Furthermore, the subgoal approach
does not scale well as tasks become more complex [1]].

Other more modern work uses objective functions to learn
sub-policies. Bacon et al. [1] extends the options framework to
an option-critic architecture that learns options automatically.
This approach is successfully applied to various tasks. Notably,
the authors show that the option-critic framework outperforms
a standard actor-critic agent and a SARSA agent when the
goal changes mid-training. Florensa et al. [8] similarly present
a method to learn hierarchical structure automatically. This
paper uses Stochastic Neural Networks (SNN) to learn useful
skills then trains a high-level policy on top of these skills. The
authors show that the SNN approach outperforms baselines
but they do not use typical RL baselines or other HRL
approaches as baselines. Frans et al. [9] also seeks to learn
sub-policies automatically. This paper uses neural networks to
learn sub-policies and a high-level policy. The authors show
that their HRL approach outperforms baselines on certain
tasks, learns meaningful sub-policies, and can learn well on
sparse environments.

These three papers all learn sub-policies automatically with-
out any domain knowledge. This is useful for many tasks that
may not have obvious sub-policies. Furthermore, the papers
highlight the success of these learned sub-policy methods
when applied to new tasks as well as when the goal is
altered mid-training. The HRL methods also outperform non-
hierarchical in certain tasks, however these tasks tend to be
specific and it is not clear that the HRL methods would
perform as well in other settings. Furthermore, there is little
work comparing task-insensitive HRL to HRL policies with
domain-specific sub-policies.

C. Robot Hardware

TriFinger is an open-source robotic platform that is devel-
oped by Wiithrich et al. [[16]]. TriFinger is unique because the
hardware for it is inexpensive and it performs safety checks to
assert that the hardware will not break, meaning it is accessible
to a general audience. TriFinger is easy to program and can
be used to test control algorithms for a variety of tasks.

In this paper, we propose to use the TriFinger robot for both
simulated and real robot tests. We choose to use this robot
because it is cheap, easy to use, has an existing simulation
environment, and because the sim-to-real transfer is effective.
Furthermore, we use this robot because it was used in the 2020
Real Robot Challenge and therefore there are existing perfor-
mance results on similar tasks to the one we are considering.



D. Further Research

The current state-of-the-art lacks comprehensive compar-
isons between RL and HRL policies. Our proposed research
is to conduct a thorough comparison of end-to-end learning,
HRL with preset sub-policies, and HRL with learned sub-
policies. This research is important for practitioners looking
to implement algorithms and deciding between RL and HRL.

Currently, HRL methods require the number of sub-policies
to be specified before training. There is still work to be done
to learn this automatically and create a truly end-to-end HRL
system. This is a particularly difficult problem since it is
desirable to have sub-policies with physical significance and
therefore one must be careful not to have too many sub-
policies. Furthermore, there is work to be done to learn multi-
layered hierarchies which is a novel topic of research.

III. PROPOSED RESEARCH
A. Overview

We propose to investigate the efficacy of HRL compared to
end-to-end learning on the cube rotation task. Specifically, we
seek to compare the following three methods:

1) End-to-end learning: training an end-to-end RL policy
with no hierarchical components on the cube rotation
task.

2) HRL with predefined sub-policies: training an HRL pol-
icy on the cube rotation task with the preset sub-policies
of rotating the cube forwards, backwards, left, and right
by 90 degrees.

3) HRL with learned sub-policies: training an HRL policies
with four sub-policies learned by neural networks.

We seek to compare these three methods by running simulated
and real robot testing. We compare the methods by analyzing
the time to train the policies, the accuracy, and the rewards.

B. Reward Function

The reward function is an essential aspect of successfully
training agents to perform well on the task at hand. In order
to formulate the reward function, we must first develop some
notation. We define 77, to be the vector normal to the goal cube
face. This vector always points in the direction up from the
palm. We define 77, to be the vector normal to the cube face
corresponding to 7i,. For example, if the goal state is the cube
with the letter ”E” on top, then 7, is the vector normal to the
”E” face on the cube being manipulated. Lastly, d represents
the distance from the center of the cube being manipulated to
the center of the hand. Figure [I|is a diagram of 7, 7., and
d.

Intuitively, we want the reward function to include some
notion of rotational distance from the goal state and some
notion of the distance to the center of the hand. The reason
we include the distance to the center of the hand in the
reward function is because we want the cube to be in a
stable place in the hand and do not want it to fall out of the
hand. Furthermore, by keeping the cube in a constant spatial

Fig. 1.
task.

Diagram showing 7ig, i, and d for a simulated cube manipulation

location, we can string together multiple rotations to perform
complex manipulations. The angle between 7, and 7, is

M>. (1

g 172,

0 = arccos (

We define the loss function as
L=0+ad 2)
and the reward function as
R=-L. 3)

We can see that the loss and reward functions includes a
parameter «. o must be tuned depending on the units of 6
and d. Tuning « is important for training policies that are
effective. To tune o, we will use a grid search approach with
end-to-end learning trained on a range of values for . We
will then select o based on the value that leads to the best
reward after a number of training steps.

Something to note is that the reward function is dense.
An alternative choice for the reward function is a sparse
function where a reward is given when the cube is in the right
orientation and a penalty is given otherwise. We use the dense
reward function in this research since it performed better than
the sparse reward function in our preliminary tests.

C. Training

We seek to train the algorithms on a simulated TriFinger
robot. For the simulation, we use OpenAl Gym with Mujoco
for the physics simulation [3]][15].

For training the algorithms, we use the proximal policy
optimization (PPO) algorithm. PPO extends traditional policy
gradient methods by using minibatch updates. PPO has high
sample efficiency, is easy to understand, and performs well
on baselines compared to A2C and ACER [13]. We use
the OpenAl Baselines library for implementation of the PPO
algorithm [7].



Training will be done on Google Cloud Compute with GPUs
to speed up training. For the preliminary results, we used a
NVIDIA Tesla T4 GPU on Google Cloud. However, we will
likely scale this up and use use multiple GPUs for training.

For end-to-end training, we train using PPO with a 2 layer
MLP network with a hidden size of 64. We also use a batch
size of 2048 timesteps. The initial state of the cube is a fixed
orientation. The goal state of the cube is the cube oriented to
a random face. In total, there are 24 goal states: six possible
faces and each face has four orientations.

For HRL with preset sub-policies, we define four sub-
policies: rotate by 90 degrees forwards, backwards, left, and
right. For each sub-policy, we have a preset goal state cor-
responding to the desired rotation. The high-level policy is
trained similarly to the end-to-end training, however the policy
can only use the sub-policies learned. During training, we train
one epoch of each sub-policy then one epoch of the high-level
policy. Therefore, each sub-policy and the high-level policy get
trained for one epoch every five epochs of total training time.
To train each sub-policy and the master policy, we use PPO
with a 2 layer MLP network with a hidden size of 64. We also
use a batch size of 2048 timesteps.

For training the HRL algorithm with learned sub-policies,
we draw inspiration from Frans et al. [9]. We use 2 layer MLPs
with a hidden size of 64 for both the master and sub-policies.
We also use 4 sub-policies to be able to compare directly to
the HRL algorithm with preset sub-policies. We use a batch
size of 2048 timesteps. The initial and goal states are identical
to the end-to-end learning.

Note that we use a similar architecture across all three
approaches: we have the same reward function, same opti-
mization algorithm and the same parameters. This will allow
us to directly compare these different methods.

D. Metrics

To compare the various learning methods, we propose to
use training time, accuracy, and reward metrics. Combined,
these metrics describe the sample efficiency of each of the
algorithms. We will perform these tests on both the simu-
lated TriFinger robot as well as a real robot. TriFinger can
be implemented in OpenAl Gym and has easy sim-to-real
transferability [16].

For the training metric, the goal is to see how fast each
method converges on an optimal policy. We compare the
number of timesteps each method takes to reach a certain
average reward threshold. This threshold will be set close to
the optimal average reward.

We will also use accuracy and reward metrics to compare
the three algorithms. For these tests, each algorithm is trained
with the same number of training steps. The number of training
steps will be chosen based on the number of steps required
for the algorithms to converge to an optimal policy. We define
success as a binary variable indicating whether the robot
successfully turned the cube to the desired face. The accuracy
is the number of successes compared to the number of trials for
many trials. We compare the accuracy of the three algorithms

Rewards over time end-to-end policy
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Fig. 2. End-to-end PPO algorithm trained for five million timesteps.

by running 100 trials for each algorithm. Furthermore, we
compare the average reward for each algorithm across 100
trials. For the trials, each algorithm has the same set of 100
goal states to reduce randomness.

E. Timeline

This research will take a total of 16 weeks. The first 2
weeks will be spent setting up the TriFinger environment
in simulation on the Google Cloud Compute server with
appropriate GPUs. The next 6 weeks will be spent building
the three algorithms in simulation, tuning the algorithms, and
collecting results on the simulated environment. The next
6 weeks will be spent transferring the simulation to a real
TriFinger robot and performing experiments on the robot. The
last 4 weeks will be spent synthesizing results and writing a
paper based on these results.

IV. PRELIMINARY RESEARCH

The preliminary research we have conducted consists of
training the end-to-end learning algorithm and the sub-policies
for HRL with preset sub-policies. The preliminary research
was done using the OpenAl hand_env environment. For future
experiments, we will use the TriFinger simulation. All training
was done on Google Cloud Compute with an NVIDIA Tesla
T4 GPU.

For the end-to-end learning algorithm, we trained PPO for
five million timesteps. The reward over time for training is
shown in Figure 2] We can see that the rewards over time
have high variance and in general do not have a strong upward
trend. In fact, the rewards decrease significantly around epoch
35. This shows that training for five million timesteps is not
enough timesteps for the end-to-end RL algorithm to converge
on an optimal policy. Therefore, for future experiments, train-
ing time will be longer and performed with more compute
power in order to successfully converge to an optimal policy.



Rewards over time for sub-policies
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Fig. 3. Sub-policies (left, right, forwards, backwards) trained for one million
timesteps.

For the sub-policy training, we trained each sub-policy for
one million timesteps. The reward over time for training is
shown in Figure 3] The solid lines in the figure are the rewards
over time and the dotted lines in the figure are the linear
fits for each sub-policy rewards over time. For the sub-policy
training, we see strong evidence of successful training since
each training curve has a clear upward trend. Notably, we see
that the forwards and backwards sub-policies improve faster
than the left and right sub-policies. This is due to the way
that the OpenAl hand_env hand is configured. The hand is
able to move its fingers forwards and backwards easier than
left and right. Furthermore, it is clear that the training curves
do not flatten out. Each curve is still on an upwards trajectory
at the end of training. Therefore, since the training does not
converge to an optimal policy, we likely need more training
time to fully train the sub-policies. However, overall, since the
rewards increases over time, it is clear that the training method
is successful.

Our preliminary experiments show us two insights that
will be applied to our future research. First, we need more
compute power to effectively train the policies. Training a
nine degree of freedom robot is expensive and takes many
iterations. Therefore, for our research in the future we plan
on using more GPUs or more powerful GPUs to accelerate
training. Second, we see that our methods are feasible since we
successfully trained the sub-policies. We believe that training
on a simulated TriFinger robot will be as successful as training
on the OpenAl hand_env.
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