
Yea or Nay: A Novel Approach to Understanding Congressional Debates

Lucas Pauker

Stanford University

Computer Science

lpauker@stanford.edu

Nina Prabhu

Stanford University

Computer Science

nprabhu@stanford.edu

Gilbert Rosal

Stanford University

Computer Science

grosal@stanford.edu

Abstract

Understanding the massive volumes of tran-
scripts that come out of congress is often dif-
ficult and inaccessible. We propose an ap-
proach to congressional representative stance
detection on the ConVote dataset, a dataset
introduced by Thomas et al. (2006), to pre-
dict how representatives will vote based on
their speeches in congress. We use past voting
behavior as features as well as a distilBERT
model finetuned on ConVote training data to
perform this analysis. We acheive an overall
test data set accuracy of 79.2% and F1-score of
80.0%, outperforming the baseline SVM and
neural network models by around 10%.

1 Introduction

The US Congress releases transcripts of every con-
gressional session. However, these transcripts are
often difficult and time consuming to parse and un-
derstand due to their length and the jargon used by
politicians. As a result, it is difficult for journalists
and researchers to understand congressional pro-
ceedings. However, understanding congressional
sessions is valuable since it provides an insight into
how democracy works in the US. Furthermore, it is
good for people to be able to understand what hap-
pens in congress quickly and effectively. Although
politicians may make promises during campaign-
ing, their true colors show on the congress floor,
where they are faced with making actual decisions
via voting on legislature. In this paper, we use NLU
algorithms to parse congressional transcripts and
analyze the sentiment of the politicians in Congress
on various topics to predict how they will vote on
these topics.

We use a dataset that includes debate text and
how legislators voted for all bills during the 109th
United States Congress in 2005 (Thomas et al.,
2006). We predict how legislators voted on bills

using textual data from these debates. We imple-
ment state-of-the-art BERT models and create new
features to build a model that vastly outperforms
our baseline.

2 Related Work

Past work in this area has consisted of a few ap-
proaches. We will highlight the most successful
ones.

2.1 Sentiment Analysis
”Get out the vote: Determining support or opposi-
tion from Congressional floor-debate transcripts”
(Thomas et al., 2006) performed sentiment anal-
ysis on individual congress peoples speeches to
determine whether they were for or against a given
topic. Unlike previous methods, the authors lever-
aged grounding relative to other speakers in the
chamber to better understand the given speakers
feelings, trying to interpret phrases like ”I second
that!” This is especially useful because congres-
sional speeches are varied in topic and latent with
misdirection and contextual phrasing. This paper
highlights another difficult challenge that arises in
general congressional sentiment analysis in its dis-
cussion about evidence. A given congressperson
may respond to another’s points or bring up evi-
dence without saying ”I agree with the legislation!”
which means we need to also factor in the context
from the bill itself. Overall, the paper employs an
SVM that optimizes its labeling of speech segments
based on both individual speech-segment classifi-
cation scores and preferences for groups of speech
segments to receive the same label.

Furthermore, this group found a significant
improvement in prediction of the sentiment of
speeches when the different speeches made by a
given speaker were constrained to receive the same
label. This is reasonable since we generally ex-
pect the same speaker to not drastically change



their opinion throughout a congressional session
(although it certainly may happen). However, we
relaxed this constraint during some of our exper-
iments to see if we could achieve similar results
through more thorough sentiment analysis instead
of manual constraints.

Thomas et al.’s (2006) success with sentiment
analysis informed our methods, but we decided to
focus more on similarities between bills instead
of similarities between congresspeople in our final
approach.

2.2 Contextual Feature Extraction

In ”Predicting the Vote using Legislative Speech”
(Budhwar, 2018), Budhwar used deliberation tran-
scripts to form models of voting behavior for each
legislator involved and make predictions of their
voting activity. To make a comprehensive model,
he extracted features such as number of questions
asked and number of interruptions by each legisla-
tor, in addition to more standard features such as
number of words spoken and sentiment of each ut-
terance. The model used various natural language
processing and sentiment analysis modules to pro-
cess the text, as well as SVMs to find the difference
between the Republican and Democrat votes.

By extracting features that relate legislators to
each other instead of just analyzing legislator-
specific utterances, this paper was able to achieve
high accuracy and get the most out of contextual
information. The feature extraction section of the
paper is likely the most valuable to us, as it dif-
ferentiates this task from many other NLU tasks
that simply analyze one section of text at a time,
and addresses and validates the possibility of glean-
ing information about legislators from their short
interactions with other legislators.

Loosely inspired by this paper, we performed
feature extraction to gain more information about
the strength of legislator’s feelings on different top-
ics. We noted exclamation points as a sign of par-
ticularly high enthusiasm, and question marks as
medium enthusiasm, as interest is being shown in a
topic. This more accurately informed the strength
of certain sentiments.

Budhwar also noted that there are newer NLP
models that could improve upon the work done on
his paper. As BERT is one of the newer methods
and relatively unused in this task, we decided to
use it as one of our components to see its success
and develop richer representations of deliberation

text.

2.3 Neural Network Approach

Many papers related to our task use legislators’ past
voting history to inform their future votes. How-
ever, some legislators have very little voting history,
making it hard to predict what they will do next. In
“Roll Call Vote Prediction with Knowledge Aug-
mented Models”, (Patil et al., 2019) Patil et al.,
the authors address this problem by finding other
sources such as news text, and using these sources
to further inform past voting history.

By making unigram features from news sources
and a knowledge base embedding, they constructed
a neural network to predict voting decisions of leg-
islators on bills that outperformed current leaders.
They represented each news text source that men-
tions a politician as a bag of words model of the
most frequent 2000 words for articles across all
politicians. They also used the Freebase Knowl-
edge base to create another model. For this, they
found all relationships in the KB that contained the
politician, and passed these relationship triples as
input into their model. They used both of these
models to provide further input (additional infor-
mation) models that take in the voting record of
a politician, the politician, and a bill to predict
whether the politician will vote yes or no on the
bill.

We used neural networks in our early experi-
mentation with our own features because of their
superior performance with feature extraction in this
paper. We chose to not use unigrams as one of our
extracted features in order to explore other meth-
ods, as we knew from this paper that unigrams
would be successful.

Patil et al. (2019) noted that BERT is an avenue
for future work due to its novelty and ability to
produce richer representations for bill text. In our
project, we used BERT to produce representations
for legislative text, as this has not been done in the
papers we reviewed on our task.

2.4 Embeddings

Kraft et al. (2016) developed a model that uses
pre-trained word embeddings to determine which
words in a bill’s text have the most bearing on vot-
ing activity. With these word embeddings, they
trained multidimensional vectors for each con-
gressperson and bill as an extension of the single-
dimensional ideal point model.

2



Total Train Test Development

Speech segments 3857 2740 860 257

Debates 53 38 10 5
Average number of speech

segments per debate 72.8 72.1 86.0 51.4
Average number of
speakers per debate 32.1 30.9 41.1 22.6

Table 1: Corpus statistics for our data set. (Thomas et al., 2006)

Their model took in a congressperson and a set
of unique words in a bill, and output a prediction
of how the congressperson voted on the bill (yes or
no).

While the set of unique words in a bill clearly
influences voting behavior, we believed that reduc-
ing this to a set might reduce the importance of a
word that is mentioned multiple times for emphasis.
While this may not be a huge limitation in a formal
bill, it is relevant for legislative debate transcripts,
where people speak with intention and conversa-
tion is more informal and natural. Although this
paper was successful, there is a stark difference
between the texts we are analyzing (bill text versus
legislative debate transcripts), so we used all of the
words in a bill instead of just the unique ones.

3 Data

We used the data set from Thomas et al. (2006)
for our analysis. This data set consists of all US
floor debates in the House of Representatives dur-
ing 2005 (3268 pages of transcripts in total). This
data set is particularly useful since it contains an-
notated information for each discourse about the
speaker, the bill being discussed, and whether the
speaker voted for or against the bill being discussed,
making it easy to start our experimentation.

The main data set Thomas et al. (2006) used was
generated through the following steps:

1. Download all the 2005 House debates from
govtrack.us.

2. For each page of debate, count the references
to each bill then associate the page with the
bill with the most references. If no references
are made to a bill during the debate, discard
the page.

3. Parse each page of the debate into speech seg-

ments, associating each speech segment with
a specific speaker.

4. Download files from govtrack.us containing
the votes placed by each representative for the
each bill throughout 2005. Connect the debate
transcripts to this data so that we have infor-
mation about whether each speech segment
speaker supports or opposes the bill being dis-
cussed. If a speaker abstained from a vote,
that speech segment is discarded.

5. Group sets of speeches corresponding to the
same bill into a ”debate”. Debates with less
than 20% of speech segments in favor of the
bill and opposed to the bill are discarded for
too one-sided.

Table 1 includes a breakdown of key statistics
about the dataset. The train/test/development split
used in our analysis is the same as used in Thomas
et al. (2006).

This dat aset is also convenient since there are
many other papers in the NLU literature that have
used this data. Such papers are described at this
webpage: https://www.cs.cornell.edu/home/

llee/data/convote.html.
Another important note: 80% of bills were in-

troduced by republicans in 2005, the time period
that this dataset comes from. In 2005, the GOP
controlled both the house and senate, explaining
the reasoning for a trend we notice later: congress
people will vote in similar ways on similar bills.

4 Baseline

We used two primary baselines that we compared
our novel models to.

1. A baseline that uses an SVM classifier to
classify each speech segment using a vector-

3

govtrack.us
govtrack.us
https://www.cs.cornell.edu/home/llee/data/convote.html
https://www.cs.cornell.edu/home/llee/data/convote.html


ized representation of the speech segment and
reweighted using TF-IDF.

2. A baseline that uses a neural network classifier
to classify each speech segment using a vec-
torized representation of the speech segment
and reweighted using TF-IDF. We optimized
this neural network using a grid search and
found ended up using a model with three hid-
den layers. The hidden layers had 50, 10, and
2 nodes, respectively.

5 Metrics

Our main goal in this project will be to use textual
data to predict how representatives in Congress will
vote on an issue. Therefore, we used F1-score and
accuracy as our primary metrics. The accuracy is
calculated as

α

τ
, (1)

where α is the number of correct predictions and
τ is the total number of samples. A correct pre-
diction is defined as when our model predicts the
correct vote for a legislator based on the speeches
a legislator made during a debate. The F1-score is
defined as

2 (
1

π
+

1

ρ
)−1, (2)

which is the harmonic mean of the precision π and
recall ρ. Precision and recall are defined as

π =
tp

tp + fp
(3)

and
ρ =

tp
tp + fn

, (4)

where tp is the number of true positives, fp is the
number of false positives, and fn is the number of
false negatives. The F1-score is a good metric since
it balances precision and recall. A high F1-score
as well as accuracy shows that our model is robust
and generalizable.

6 Methods

For the task of senator stance prediction using tex-
tual data, we built two components: one leveraging
manual feature extraction of past voting history
and the other using BERT finetuned on the Con-
Vote dataset (we referred to this model as gilBERT).
We tested each of these models separately and ulti-
mately combined the models. We will now discuss
each model in detail.

6.1 Bill Similarity

We extended traditional supervised learning models
with novel features. Specifically, we focused on
implementing bill similarity and past voting history
to improve our model. These two features use the
following intuitive heuristic: people will vote in
similar ways on similar bills. To implement bill
similarity, we encoded text into a feature space then
calculated the relative distance between documents
using a distance function. We experimented with
TF-IDF encodings as well as BERT encodings for
the feature representation of the bill texts.

To calculate the similarity of two different bills,
we first grouped all the debate text for each separate
bill together. We then encoded each bill-specific
text into a matrix using TF-IDF or BERT. Lastly,
we calculate the dissimilarity of the text of two
bills by using a distance function on the two vector
representations of the bills. A higher distance im-
plies that bills are more difference, while two bills
that are exactly the same will be distance 0 from
each other. Figure 1 shows the distributions of the
distances between bills using TF-IDF encodings as
well as BERT encodings. This figure also shows
the distribution of how similar voting behavior is
between different bills. We can see that both TF-
IDF and BERT distances are qualitatively close to
normal distributions, which shows that this statistic
picks out interesting information that is distributed
in an intuitive way.

BERT encodings are a relatively novel approach
to this field. To extend our previous basic bill simi-
larity computations, we decided to first each docu-
ment to its respective BERT encoding using a phi
function. This gave us a multidimensional vector
for each document, with shape (x, 768) where x
varied loosely related to the length of the document.
To compare each encoding, we averaged each multi-
dimensional vector along its first dimension, giving
us a final shape of (1,768) or a row vector of length
768 that we could use in the method described in
the previous paragraph.

Figure 2 is a scatter plot of the TF-IDF distance
scores compared to the vote similarity. This plot
shows that there is an inverse correlation between
TF-IDF distance and vote similarity. This is ex-
pected since bills that are similar should have a
low TF-IDF distance and a high voting similarity.
This gives us some confidence that our hypothesis
heuristic that people will vote on bills that have
similar text has merit. However, this data is clearly

4



Figure 1: Top: Euclidean distance distribution between
different bills encoded using a document-frequency ma-
trix and reweighted using TF-IDF.
Middle: Euclidean distance distribution between differ-
ent bills encoded using BERT.
Bottom: Distribution of how similar votes from the
same representatives are between different bills. Sim-
ilarity is calculated as a percentage of speakers in de-
bates that voted the same way in the bills we are com-
paring.

Figure 2: Graph of TF-IDF distance scores versus vote
similarities. The red line is the line of best fit calculated
using linear regression. We expect the slope to be nega-
tive since more similar bills (smaller TF-IDF distance)
should result in representatives voting the same way on
both bills. The line of best fit has a slope of -0.533, a y
intercept of 1.058, and an R2 coefficient of 0.066.

very noisy, as evidenced by the low R2 statistic for
our line of best fit. This is due to the fact that our
voting similarity score only measures the voting
similarity between representatives that spoke in the
debate for both bills in question. Some debates hav-
ing a small number of overall speakers. Therefore,
many bills have few common speakers between
them, the vote similarity score is a noisy statistic.

To make predictions using the distance calcu-
lated between bills, we use past voting behavior.
For any bill that we seek to predict how a repre-
sentative will vote, we first find the most similar
bills in the training set to the bill in question by
choosing the n bills with the lowest distance scores
compared to the bill in question. We then look
up how the representative voted on these similar
votes, and output the majority way they voted. This
introduces a hyperparameter n that represents the
number of similar bills to consider. By using an ex-
haustive grid search, we found that n = 26 yields
in the highest accuracy on the development data
set. Results of our trials using the bill similarity
classifier are shown in Table 3.

Furthermore, we have a choice of distance func-
tion that is used to calculate similarity between
bills. We considered Euclidean and cosine distance
functions. We found that Euclidean distance out-
performed cosine distance in accuracy on our devel-
opment data set. This makes sense, as (Gerrish and
Blei, 2011) and other papers describe politician’s
viewpoints using the ideal point model. In this,
politicians and bills can are mapped to points on a

5



number line or coordinate plane and congresspeo-
ple vote on bills based on their distance to the bill.
Taking this common representation into account,
it follows that Euclidean distance would be better
suited to this task than cosine distance.

6.2 BERT Model

Most work in congressional stance analysis is done
using supervised machine learning models with
explicit feature extraction. However, as noted by
Budhwar (2018) these models are merely the foun-
dation of future work as there are new deep learn-
ing NLP models that could significantly improve
progress in this field, such as BERT (Budhwar,
2018). Patil et al. (2019) corroborate this claim as
they explain that BERT could be a key because of
its ability to represent text in a deeper, more mean-
ingful way(Patil et al., 2019). As a result, we use a
BERT model fine tuned on the Convote data set in
an attempt to improve performance.

For our BERT model we used the following ra-
tionale as motivation: the utterances made by each
congress person should be latent with enough mean-
ing about their stance (”I hate this bill!”) such that
an attention-based model like BERT should be able
to identify the stance of the speaker and make a
corresponding prediction. We chose distilBERT be-
cause it was faster to train and fine tune on due to its
smaller size. More specifically, distilBERT reduces
the size of a BERT model by 40%, while retain-
ing 97% of its language understanding capabilities
and being 60% faster with 6-layers, 768-hiddens,
12-heads, and 66M parameters (Sanh et al., 2020).

The output of distilBERT is a prediction of yes
or no given some speaker’s utterance in a Congress
debate, in line with of task of stance analysis. One
major concern was that some of the utterances were
more than 512 words (which is the cap for BERT),
meaning we had to cut many of the inputs short.
This means key information may have been trun-
cated. If given more time and a more powerful
computer, we also tried experimenting with other
BERT models like bert-base-uncased, bert-large-
uncased, and roBERTa but running all the tests
proved too costly (with each test taking about 1.5
hours).

For the BERT model, we experimented with
three primary hyperparameters: the number of gra-
dient accumulation steps g, the number of epochs e,
and whether the vocabulary was cased c. We exper-
imented with gradient accumulation step values of

1 and 8, epochs of 3, 5, and 10, and both cased and
uncased vocabulary. We ran our model on an AWS
m5.8xlarge instance and used a grid search to de-
termine the best parameters. We found that the best
parameters were g = 1, e = 10, and c = False.
Immediately updating the gradient proved more
effective because steps between gradients now had
the previous examples gradient impacting the pa-
rameters. A lower gradient accumulation step size
does, however, increase the amount of computation
(since were updating the parameters 8x more often),
so we have a tradeoff between compute resources
and model performance. The BERT model tests on
the development set with different hyperparameters
can be seen in Table 2.

GAS Epochs Cased? F1-score

8 3 Yes 0.698

8 3 No 0.703

1 3 Yes 0.733

8 5 No 0.737

1 3 No 0.739

1 5 No 0.746

1 10 No 0.748

Table 2: BERT macro F1-score for the development
data set with varying hyperparameters. The rows are
arranged in order of increasing F1-score. GAS refers
to the number of gradiant accumulation steps.

6.3 Combination Model

To combine the BERT and bill similarity models,
we used heuristics to determine whether to use the
BERT prediction or the bill similarity prediction for
a given speaker and debate text. Since our BERT
model outputted the likelihood a specific speaker
would vote yes or no, we used the BERT prediction
if this likelihood was above a threshold accuracy.
For this threshold, we simply used the accuracy of
the bill similarity model with TF-IDF encodings
on the test set, which is 0.789, as seen in Table
3. This threshold makes sense since if BERT is
more confident than our bill similarity accuracy,
we should use BERT instead of the bill similarity
metric.

6



Model
Development

accuracy
Development

F1-score Test accuracy Test F1-score

Neural network baseline 0.646 0.668 0.636 0.669

SVM baseline 0.722 0.754 0.686 0.719

distilBERT model 0.735 0.748 0.721 0.729

Bill similarity model
with TF-IDF encodings 0.897 0.907 0.789 0.798

Bill similarity model
with BERT encodings 0.903 0.912 0.773 0.783

Combined model 0.903 0.913 0.792 0.800

Table 3: Comparison of different models discussed throughout the paper. We include accuracy and F1-scores for
both the development and test data sets.

7 Results and Discussion

Table 3 contains the results from the test set. Our
most successful model was the combined bill simi-
larity and BERT model, followed by the bill simi-
larity models, then the BERT model, then the base-
lines.

The success of the feature extracting models is
likely attributable to the strong signal in a vote.
By adding the past voting behavior, we are able
to understand how a specific speaker voted and
therefore are able to predict how they will vote on
a similar new bill accurately.

The poorer performance from the BERT model
stems from two main places. First, BERT is only
compatible with utterances of max length 512,
but this is problematic since many of our train-
ing examples had a length greater than 512. This
means many of the training examples had to be
truncated, potentially removing information essen-
tial to a good prediction. Additionally, although
distilBERT can effectively learn the relationship
between words within a sentence, it overlooks the
relationship between documents since many of the
utterances are responsive in nature.

We observed that the hybrid model performed
better than any of its individual components with
the highest test accuracy and F1-score of 0.792 and
0.800 respectively. This shows that there is a strong
case for model hybridization for congressperson
stance detection. That being said, Patil et al. (2019)
were able to achieve scores in the 90% range using
more outside context beyond congressional speak-

ings, indicating much more room for future work.
Across every model, our development score was

better than our test score in both F1 and accu-
racy statistics, likely indicating too much tuning
on the validation set and thus overfitting. This
makes sense in both the context of our bill simi-
larity model and BERT model since both used the
training set to continually fine tune their parameters
(and for example, increasing the number of epochs
for the BERT model).

The development set’s results for both bill sim-
ilarity models show significant promise for better
predictions achieving a high of 90.3% when the
combination model is used. The BERT model’s
performance paled in comparison to the other mod-
els reaching a 75% success rate, although this was
still better than both the NN and SVM baselines.

8 Conclusion

Building off of Patil et al. (2019) and Budhwar
(2018), this paper sought to derive latent meaning
from politicians utterances in congressional cham-
bers using both old and new techniques: manual
feature extraction, BERT fine tuned on task-related
datasets, and a combination of the two. All three
methods did better than the baselines with the hy-
brid performing the best, followed closely by the
manual feature extraction model, and all three mod-
els also generalized relatively well. This lays the
groundwork for future experimentation with BERT
and hybridization in this task space. Furthermore,
this paper shows that considering past voting be-
havior as well as textual similarity between bills

7



is essential for building an accurate model for pre-
dicting votes in Congress based on textual debate
data.

9 Future Work

As an extension of this paper, one could further
experiment with different BERT models (like bert-
base or bert-large) and further tweak hyper param-
eters. Furthermore, one could find a better way
to navigate the length of many data points being
greater than 512. BERT itself shows significant
promise in its ability to outperform baselines, and
further investigation must occur to see its power in
this field.

In this paper, we focused on predicting how con-
gresspeople vote based on fixed bill text. However,
there is also much work to be done with the con-
verse of this problem - modeling the voting strate-
gies of fixed congresspeople. Yano et al. (2012)
sought to predict whether a bill will survive a con-
gressional committee. They created models of how
congress committee members would vote on cer-
tain bills and found that the text of bills contains
important information that can help predict success
in Congressional committees.

We can use our existing work in predicting how
people will vote on known bills to take Yano et al.’s
work further and investigate how voting behavior
is affected by small changes in bill wording (e.g.
replace one topical word with another, or flip all
party words in a debate).

10 Acknowledgements

We would like to thank Professor Chris Potts, our
advisor Dora Demsky, and the rest of the 224U
course staff for teaching us information necessary
to conduct the experiments described above and
providing feedback on this project and other as-
signments along the way.

11 Authorship Statements

Nina worked on refining the BERT representations
for the manual feature extraction model and cre-
ate the neural network baseline model. She also
helped with initial iterations of the gilBERT model.
Lucas worked on the bill similarity model, imple-
menting the logic for both the TF-IDF and BERT
representations. Lucas also implemented the SVM
baseline model. Gilbert worked on the gilBERT
model, implementing the finetuning on ConVote,
setting up the AWS machine, and performing any

high volume experiments. All three of us worked
together to implement the combined model and
write all papers.

References
Aditya Budhwar. Predicting the vote using legislative

speech. null, 03 2018.

Sean Gerrish and David Blei. Predicting legisla-
tive roll calls from text. Technical report, null,
2011. URL https://icml.cc/2011/papers/
333_icmlpaper.pdf.

Peter Kraft, Hirsh Jain, and Alexander Rush. An em-
bedding model for predicting roll-call votes. 11
2016.

Pallavi Patil, Kriti Myer, Ronak Zala, Arpit Singh,
Sheshera Mysore, Andrew McCallum, Adrian Ben-
ton, and Amanda Stent. Roll call vote predic-
tion with knowledge augmented models. In Pro-
ceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), pages 574–
581, Hong Kong, China, November 2019. Associ-
ation for Computational Linguistics. doi: 10.18653/
v1/K19-1053. URL https://www.aclweb.org/
anthology/K19-1053.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter, 2020.

Matt Thomas, Bo Pang, and Lillian Lee. Get out the
vote: Determining support or opposition from con-
gressional floor-debate transcripts. In Proceedings
of the 2006 Conference on Empirical Methods in
Natural Language Processing, pages 327–335, Syd-
ney, Australia, July 2006. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/W06-1639.

Tae Yano, Noah A. Smith, and John D. Wilkerson.
Textual predictors of bill survival in congressional
committees. In Proceedings of the 2012 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 793–802, Montréal,
Canada, June 2012. Association for Computational
Linguistics. URL https://www.aclweb.org/
anthology/N12-1097.

8

https://icml.cc/2011/papers/333_icmlpaper.pdf
https://icml.cc/2011/papers/333_icmlpaper.pdf
https://www.aclweb.org/anthology/K19-1053
https://www.aclweb.org/anthology/K19-1053
https://www.aclweb.org/anthology/W06-1639
https://www.aclweb.org/anthology/W06-1639
https://www.aclweb.org/anthology/N12-1097
https://www.aclweb.org/anthology/N12-1097

