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Abstract

In this paper, we investigate automated machine captioning of basketball videos.
We expand on the paper Sports Video Analysis on Large Scale Data [[1], which
provides a novel NBA video captioning dataset, and a unified approach for video
captioning, the SportsFormer model. We identify a main shortcoming of the paper’s
approach, which is that it uses a very complex pipeline that involves basketball
specific vision models. We demonstrate that with additional data gathering, modifi-
cations to the decoder architecture and a multi-task learning framework, we can
have a simpler and high performing model composed of a pre-trained video trans-
former, a pre-trained encoder to process the video encodings, and a decoder model.
This approach eliminates the use of three object detection models, a segmentation
model, a vision transformer, and two other transformers from the SportsFormer
architecture. Our method removes the need for training basketball specific vision
models, which potentially makes this framework more adaptable to other sports.

1 Key Information to Include

* External collaborators (if you have any): None.
* Mentor (custom project only): Yuan Gao.

* Sharing project: Lucas is using this codebase for CS324 as well.

2 Introduction

In this paper, we investigate automated captioning of basketball videos. Specifically, we develop a
simple model that takes a basketball video as input and generates play-by-play analysis automatically
in the form of text.

This problem is interesting for two reasons. First, it has potential applications in professional sports
analysis and broadcasting. By automatically generating commentary, our proposed model can help
sports analysts to remember the game better, perform statistical analysis, and easily retrieve key
plays. Second, this problem is technically challenging because captioning sports videos requires
understanding multiple aspects of the game, which can be difficult due to the many actions that can
happen in a single play. Finally, another technical challenge with video captioning (compared to
standard natural language generation) is that processing videos require significantly more storage and
computation.

Although some previous work has been done on this problem [1} 2], it typically involves complex
basketball-specific modeling approaches such as ball detection and player skeleton detection. In
contrast, we aim to develop a simpler, sport-agnostic model.

We base our work on Sports Video Analysis on Large Scale Data [[1], which provides a novel NBA
video captioning dataset, and a unified approach for video captioning, the SportsFormer model. We
experiment with two new approaches. The first is focused on using additional data to restrict the
caption generation model to use only player names that play for one of the two teams on court. The
second approach is focused on using additional labels provided in our dataset (action and player
labels) to train a model with multi-task learning. Our final model that combines these two approaches
achieves comparable performance with the SportsFormermodel. Thus, we eliminate, the use of three



object detection models, a segmentation model, a vision transformer, and two other transformers
from the SportsFormer architecture. Achieving similar performance without the use of basketball
specific vision models potentially makes this framework more adaptable to other sports.

3 Related Work

Automated sports commentary generation has been an active area of research, with various approaches
proposed to tackle this problem. Some prior work has used computer vision techniques to extract
features from sports videos and then used machine learning models to generate commentary. For
instance, in [1]], player and ball tracking were utilized to generate basketball play-by-play commentary,
while in [2]], player skeleton detection and ball tracking were employed to generate basketball
commentary. While the prior works for basketball video captioning have shown promising results, they
typically involve sport-specific modeling techniques that can be complex and difficult to implement.
In contrast, our proposed approach avoids basketball specific vision models while still achieving high
levels of accuracy. Other papers focus on generating captions for other kinds of sports videos, such
as football and volleyball [3].

Transformers have been successfully applied to many tasks in recent years [4]. For example, BERT
[S] is a transformer model that has been successfully applied to text input. ViT [[6] is a transformer
model for images that is the basis for video encoder models such as TimeSformer [7] and VideoMAE
[8]. ViT converts an image into a sequence of patches on which a transformer is applied. TimeSformer
is the video encoder model used in our paper. Our paper uses transformer models as building blocks
for the encoder and decoder.

Transformer models that convert video to text are available in literature. In general, such models are
similar to transformer models designed to convert images to text. For example, GIT: A Generative
Image-to-text Transformer for Vision and Language [9] is a transformer model that is designed to
convert images to text, which can be useful for image captioning. GIT uses an image encoder and a
text decoder trained concurrently. End-to-End Transformer Based Model for Image Captioning [[10]
uses a similar encoder/decoder architecture for image captioning. UniVL [11], develops a pre-trained
model for tasks involving video and text. However, generic video to text models such as UniVL do
not perform well for sports-specific tasks out of the box.

4 Methods
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Figure 1: SportsFormer architecture [[1]].

Initial architecture We base our work on the SportsFormer architecture (Figure[T) proposed by the
Sports Video Analysis on Large Scale Data paper [1]]. This architecture is largely based on the UniVL
architecture [11]], and uses the pretrained weights from UniVL. Videos are first fed into TimeSformer
[7]], a pre-trained video model, to extract spatio-temporal representations. These features are then
channeled into a transformer encoder. Additionally, frames from the video are fed into several
vision models for ball, player, and basket detection, and court line segmentation, all of which are



channeled into a pre-trained vision transformer model for feature extraction. Then, these features
are cross-encoded with the video representation extracted from TimeSformer. Finally, a transformer
decoder is used to generate video captions.

When feeding videos into TimeSformer, each frame is decomposed into F non-overlapping patches,
each of size P x P, such that the F’ patches span the entire frame, i.e., F' = HW/P2. These patches
are flattened into vectors and channeled into several blocks comprised of linear-projection, multi-head
self-attention and layer-normalization, in both spatial and temporal axes. The features from the video
are defined as

F,. = TimeSformer(X) e))
where F,, € RV*?, d is the feature dimension and X is the input clip.

Simplified architecture We identify the following problems with the initial architecture:

1. It requires manual annotation efforts for each of the four basketball vision models (ball,
player, basket, and court line models).

2. The models in the pipeline need to be separately trained and evaluated, and the impact of
each model on the end-to-end performance requires extensive experimentation.

3. It requires the training of a vision transformer, a transformer to encode the outputs of the
vision transformer, and a transformer to cross encode the basketball features with the video
features, all of which increase compute requirements and add complexity to the pipeline.

Overall, these problems make this framework difficult to apply to video captioning for other sports.
Thus, we propose a simpler pipeline that consists of extracting the video features for each video from
our video encoder, and then applying an encoder-decoder model on top of the features. Our encoder
is a transformer with 6 layers, where each block has 12 attention heads and the hidden layer size is
768. Our decoder is a transformer with 3 layers, with the same number of attention heads and hidden
layer size as the encoder. This modified approach eliminates the use of 3 object detection models, a
segmentation model, and two transformer models from the original SportsFormer architecture. Our
architecture is shown in Figure[2]
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Figure 2: Our final architecture.

Additional data and masking predictions The authors of the SportsFormer paper also experiment
with simpler architectures, and the main problem they cite is that it is hard to identify players with
Timesformer video features alone (i.e. without the vision models). This often results in captions with
player names that are not even in the game.

We use additional data on players to mitigate this. When a sports captioning model is deployed, we
will likely have access to the names of the players of the two teams that are playing before the game
starts. To add this data to the model, after the final block of the decoder model, we adjust the output
logits in the following way:

logits = logits + (—10° m), )



where m is a mask vector. For a given sample (video clip), for all players who are not in the rosters
of the two teams in the video, their associated indices are set to 1. All other indices are set to 0. This
way, the logits of players on other teams are set to very large negative numbers, and at inference
time when the scores are passed through a softmax layer, these players always have a prediction
probability of 0. We experiment with applying this masking at evaluation time, and applying it during
training and evaluation time.

Game

Task1: [Caption]: Doncic three-point 26’ jump-shot missed and DeAndre Ayton rebound.

Caption
Task2: [Action]: Missed 3-pt jump-shot, Rebound

Task3: [/dentity]: Doncic, DeAndre Ayton

Figure 3: Multitask learning labels

Multi-task learning The dataset provided in the SportsFormer paper also contains lables for the
players involved in action and the type of action (three point jumper, dunk, layup, etc.). Figure
[3 shows an example of labels for three different tasks generated from a clip. The authors of the
SportsFormer paper use their architecture to train two other models on this data: a player identification
model, and an action identification model. There is significant overlap between these two tasks and
the caption generation task. Multi-task learning can leverage useful information of related tasks to
achieve simultaneous performance improvement. Thus, we propose that training a single model with
the multi-task learning framework can boost performance for video captioning, particularly for the
parts of the caption that relates to players and actions. To implement multi-task learning we do the
following:

* Create a custom dataloader such that each batch consists of samples of a single task type
(caption generation, player identification, or action identification). This makes the training
process fully parallelizable since the whole batch follows the same path through the model.

* For our decoder network, we replace the last block of the transformer with three copies of
the decoder block. Thus, each of our tasks share parameters for the encoder and the first
two blocks of the decoder, whereas they have their own parameters for the last block of
the decoder. The three copies of this last block serve as "task heads" that specialize on the
specific task.

* We add functionality to our multitask model such that we can apply the prediction masking
described above specifically to the caption generation head.

Baselines Our baseline is the simple architecture we propose in the Simplified Architecture [
section. The authors of the SportsFormer paper include results about a model similar to this baseline,
however the details are not clear and the weights are not publicly available. Therefore, we train this
model ourselves.

S Experiments

Dataset We use the NBA dataset for Sports Video Analysis (NSVA) dataset introduced in the Sports
Video Analysis on Large-Scale Data paper [1]. This dataset contains 32,019 video clips, each with
associated play-by-play information such as actions and player names. These video clips are from
132 games played by 10 teams in NBA season 2018-2019. Overall, this dataset has higher quality
captions than previous datasets in the field, because it uses specific player names and uses various
processing methods to make sure the captions don’t contain information beyond the scope of the clip.



Contributions to dataset Although the dataset uses player IDs as tokens in captions, it doesn’t
have information on the whole set of players who could be in court for a given video clip. To apply
the method noted in our Approach@]section and limit the model to predict only the players who could
potentially be on court, we use an original scraping script to gather the rosters of the two teams from
the NBA website in every clip, and the associated player IDs.

Downstream captioning task evaluation methods Our quantitative evaluation for the video
captioning task is based on four widely used NLP evaluation metrics: BLEU, METEOR, CIDEr, and
ROUGE-L. The BLEU score [12]] measures the n-gram overlap between the generated commentary
and a reference commentary, with a higher BLEU score indicating that the generated commentary is
more similar to the reference commentary. The METEOR score [[13]] is similar to the BLEU score,
but it takes into account word-level alignments and synonymy between words. CIDEr [14] is a metric
designed specifically for evaluating image descriptions. ROUGE-L [15]] measures longest common
subsequence.

Experiment details For our experiments, we use a BertAdam optimizer and a learning rate
a = 3 % 1075 with a weight decay of 0.01. The training time for training each model is 6 hours on a
single NVIDIA Tesla T4 GPU. We train each model for 20 epochs using early stopping. At inference,
we use beam search with beam size 5.

Results Our results are shown in Table[I} From these results, we can see that each of our incremental
changes (player masking during inference, player masking during training, and multi-task learning)
improves the model for each of the metrics. We also include the best model from the SportsFormer
paper in our table for reference. We can see that our best model is close to the model from this paper,
despite our simpler architecture. Specifically, we can see that the CIDEr score is very close between
our best model and the SportsFormer best model. Since CIDEr is a metric specifically built for image
captioning and uses human consensus, we believe this metric is the most aligned with our task.

Architecture C M B@l B@2 B@3 B@4 R L
Modified architecture only 0.977 0.223 0.4840 0.372 0.279 0.211 0.474
Masked eval 1.060 0.227 0.492 0.378 0.284 0.217 0.4781

Masked eval + masked training 1.121 0.229 0.498 0.383 0.290 0.223 0.485

Masked eval + masked training 1.138 0.233

. . 0.506 0.393 0.298 0.230 0.491
+ multi-task learning

SportsFormer paper model [1] 1.139 0.243 0.522 0.410 0.314 0.243 0.508

Table 1: Experimental results of various models run on test data. We did not run the model in the
final row, and only include it for reference.

6 Analysis

Qualitative comparison of captions Table[2]shows an example caption generated by three different
models, as compared to the ground-truth reference. For the first model (modified architecture only),
we see that the model correctly identifies that there is a missed shot and a rebound. However, the type
and distance of the missed shot is incorrect, and the player that missed the shot is incorrect (in fact, it
is a player not in the game), and the player for the defensive rebound is incorrect. Additionally, the
caption does not include the offensive rebound. Moving on to the masked eval + masked training
model, we expect an improvement in player names. This indeed happens, where the player who
missed the shot is corrected. However, the type of shot is still incorrect, the defensive rebounder is
incorrect, and the caption still doesn’t include the offensive rebound action. Finally, moving on the
masked eval + masked training + multi-task learning model, we expect a possible improvement in
actions in the caption. This indeed happens in two ways. The type and distance of the missed shot is
corrected (1’ tip layup instead of 4 * layup). Also, the offensive rebound action and player is correctly
generated. The generated caption is still not correct, because the defensive rebounding player is



Model Caption

Miss LaMarcus Aldridge 4’ layup
Rudy Gobert defensive rebound

Miss Rudy Gobert 4’ layup
Rudy Gobert defensive rebound

Modified architecture only

Masked eval + masked training

Rudy Gobert offensive rebound
Rudy Gobert 1’ tip layup shot
Rudy Gobert defensive rebound

Masked eval + masked training
+ multi-task learning

Rudy Gobert offensive rebound
Reference Miss Rudy Gobert 1’ tip layup shot
Steph Curry defensive rebound

Table 2: Example comparison of a predicted caption across different models.

incorrect. Overall, this example demonstrates that the intuition behind our progressive improvements
to the model leads to expected improvements with some limitations. We address these limitations in
the next section.

Performance breakdown by action type For our best model (i.e. the model with player masking
and multi-task learning), we investigate which actions perform the best when comparing our predicted
captions to the ground truth captions. In order to do this, given an action @ and a caption ¢, we
define I(c, a) as true when c contains a and false otherwise. Using this function, we calculate the
precision and recall of T for our model compared to the ground truth I. Our results are shown in
Figure [3] We can see that the precision and recall for "shot" are relatively high, meaning that our
model is successful at including "shot" in the predicted caption. However, the precision and recall
for "layup shot" are much lower. This indicates that the model has a harder time identifying layup
shots compared to normal shots. This intuitively makes sense since layup shots are a subset of shots
and are harder to identify. This is in general true for actions, and the performance degrades the more
specific an action is. For example, performance on offensive rebound is lower than the performance
on rebound in general. Furthermore, we see that "foul" and "rebound" have high precision and recall
as well, while "turnover," which is a rarer action has lower precision and recall.

Action Precision Recall
shot 0.774  0.751
layup shot 0.438 0.496
foul 0.768  0.827
rebound 0.753 0.824
turnover 0.618 0.508

Table 3: Precision and recall for various actions between our best model and the ground truth captions.

Common failures One common failure we see from our model is its tendency to predict the same
name multiple times in the caption, even in places it does not make sense. For example, for one video,
our best model predicts "jump ball LaMarcus Aldridge vs. LaMarcus Aldridge" for one video. This
is impossible, since in basketball one cannot have a jump ball with themselves. Another common
failure for our model is predicting the distance of shots. For example, our model will predict a 14 foot
jump shot when the true caption is a 21 foot jump shot. We believe that getting the distances correct
for shots is difficult for our model since the video model downsamples the videos, and therefore the
model loses spatial information.



7 Conclusion

In this paper, we have demonstrated that with careful use of data, modifications to the decoder
architecture of the previous work and a multi-task learning framework, we can have a simple and
high performing model for basketball video captioning. Our best model is composed of a pre-trained
video transformer, a pre-trained encoder to process the video encodings, and a decoder model.
This approach eliminates the use of three object detection models, a segmentation model, a vision
transformer, and two other transformers from the architecture. Our method removes the need for
training basketball specific vision models, which potentially makes this framework more adaptable to
other sports.

Future Work The main bottleneck in our model’s performance is how the video features are
generated. The TimesFormer video model is pre-trained on a large corpus of videos, but it is not
fine-tuned on basketball specific videos. Finetuning a video model such as on basketball videos
with unspervised learning could significantly increase the quality of the video features and increase
performance. Additionally, using TimesFormer requires using a smaller resolution, and this causes
the model to lose spatial information. Using or developing a video model that can process larger
resolution frames would increase performance.

A final avenue for future work, and perhaps the most exciting, is more creative caption generation.
The NSVA dataset that we used has mechanistic play-by-play captions that would not be sufficient to
replace human commentary. The main challenge for this task is that human commentary includes
information that is not available from the video clip alone, and often is not time-aligned with the
video. Creative caption generation would require the creation of a new dataset and possibly a more
complex modeling approach.

8 Other Information

Here is the code for this project: https://github.com/lucaspauker/NSVA.
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